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Introduction Partitional clustering

Clustering

Unsupervised learning task:
Find structure in data in form of clusters without labels

Clusters can take many shapes.

A quote from Jain’s much cited
survey [J10]: ‘. . . none of the available clustering algorithms can
detect all these clusters’ [in Fig 2. from [J10], redrawn below]:

[J10] Jain: 50 years beyond k -means, Pattern Recognition Letters, 2010.
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Introduction Partitional clustering

Even worse:
The correct output may depend on the data set
The ‘natural’ clustering may even lie in the eye of the beholder
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Introduction Partitional clustering

Even worse:
The correct output may depend on the data set
The ‘natural’ clustering may even lie in the eye of the beholder

Consequence: Tons of different objectives and algorithms.
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Introduction Partitional clustering

Even worse:
The correct output may depend on the data set
The ‘natural’ clustering may even lie in the eye of the beholder

This talk: Partitional Clustering, geometric setting
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Introduction Partitional clustering

Partitional Clustering

Given a point set P (and k ∈ N)
and some pairwise distances,
partition P into C1, . . . ,Ck

to optimize some objective

The three ‘k’-objectives
Pick k centers induced partitioning

k -center: maximum distance, metric
k -median: sum of distances, metric
k -means: sum of squared
distances, Euclidean space Rd

Facility location: like k -median, but opening cost instead of k

not center-based: min sum k -clustering, aversion k -clustering
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Introduction Partitional clustering

Approximation: State of the art
Approximation Hardness

k -center

2 [G85,HS85] 2 [HN79]

facility location

1.488 [L11] 1.463 [GK99]

k -median

1 + 2/e ≈ 1.74 [HN79]

k -means

1.0013 [ACKS15], [LSW15]

min sum k -clustering
aversion k -clustering

Behsaz, Friggstad, Salavatipour, Sivakumar. Appr. Alg. for Min-Sum k-Clustering and Balanced k-Median, ICALP 2015.

[G85] Gonzalez. Clustering to minimize the maximum intercluster distance, Theoretical Computer Science 1985.
[GK99] Guha, Khuller. Greedy strikes back: Improved facility location algorithms, J. Algorithms 1999.

Gupta, Guruganesh, S. Approximation Algorithms for Aversion k-Clustering via Local k-Median, ICALP 2016.

[HN79] Hsu, Nemhauser, Easy and hard bottleneck location problems. Discrete Applied Mathematics 1979.
[HS85] Hochbaum, Shmoys, A best possible heuristic for the k -center problem, Mathematics of Operations Research 1985.

[L11] Li. A 1.488-approximation algorithm for the uncapacitated facility location problem. ICALP 2011.
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Approximation: State of the art
Approximation Hardness

k -center 2 [G85,HS85] 2 [HN79]
facility location 1.488 [L11] 1.463 [GK99]
k -median 3 + ε [AGK+01] 1 + 2/e ≈ 1.74 [HN79]
k -means 9 + ε [KMN+02]

1.0013 [ACKS15], [LSW15]

min sum k -clustering O(ε−1 log1+ε n) [BZR01]
aversion k -clustering

[AGK+01] Arya, Garg, Khandekar, Meyerson, Munagala, Pandit. Local search heuristic for k-median [. . . ], STOC 2001.

Behsaz, Friggstad, Salavatipour, Sivakumar. Appr. Alg. for Min-Sum k-Clustering and Balanced k-Median, ICALP 2015.

[BZR01] Bartal, Charikar, Raz. Approximating min-sum k -Clustering in metric spaces. STOC 2001.
[G85] Gonzalez. Clustering to minimize the maximum intercluster distance, Theoretical Computer Science 1985.
[GK99] Guha, Khuller. Greedy strikes back: Improved facility location algorithms, J. Algorithms 1999.

Gupta, Guruganesh, S. Approximation Algorithms for Aversion k-Clustering via Local k-Median, ICALP 2016.

[HN79] Hsu, Nemhauser, Easy and hard bottleneck location problems. Discrete Applied Mathematics 1979.
[HS85] Hochbaum, Shmoys, A best possible heuristic for the k -center problem, Mathematics of Operations Research 1985.
[KMN+02] Kanungo, Mount, Netanyahu, Piatko, Silverman, Wu. A local search approx. alg. for k-means clustering, SoCG 2002.
[L11] Li. A 1.488-approximation algorithm for the uncapacitated facility location problem. ICALP 2011.

Clustering (Workshop@SoCG 2018) June 11th, 2018 4 / 30



Introduction Partitional clustering

Approximation: State of the art
Approximation Hardness

k -center 2 [G85,HS85] 2 [HN79]
facility location 1.488 [L11] 1.463 [GK99]
k -median 2.675 + ε [BPRST15] 1 + 2/e ≈ 1.74 [HN79]
k -means 6.357 [ASFW17] 1.0013 [ACKS15], [LSW15]
min sum k -clustering O(log n) [BFSS15]
aversion k -clustering O(1) [GGS16]

[ACKS15] Awasthi, Charikar, Krishnaswamy, Sinop. The hardness of approximation of euclidean k-means, SoCG 2015.
[AHSW17] Ahmadian, Norouzi-Fard, Svensson, Ward: Better Guarantees for k-Means and Euclidean k-Median by Primal-Dual Algorithms, FOCS 2017.
[BFSS15] Behsaz, Friggstad, Salavatipour, Sivakumar. Appr. Alg. for Min-Sum k-Clustering and Balanced k-Median, ICALP 2015.
[BPRST15] Byrka, Pensyl, Rybicki, Srinivasan, Trinh. An Improved Approximation for k-median [. . . ], SODA 2015.
[G85] Gonzalez. Clustering to minimize the maximum intercluster distance, Theoretical Computer Science 1985.
[GK99] Guha, Khuller. Greedy strikes back: Improved facility location algorithms, J. Algorithms 1999.
[GGS16] Gupta, Guruganesh, S. Approximation Algorithms for Aversion k-Clustering via Local k-Median, ICALP 2016.
[HN79] Hsu, Nemhauser, Easy and hard bottleneck location problems. Discrete Applied Mathematics 1979.
[HS85] Hochbaum, Shmoys, A best possible heuristic for the k -center problem, Mathematics of Operations Research 1985.
[LSW15] Lee, S. Wright. Improved and Simplified Inapproximability for k-means, IPL 2017.
[L11] Li. A 1.488-approximation algorithm for the uncapacitated facility location problem. ICALP 2011.
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Introduction Partitional clustering

Many techniques

Center based
k -center somewhat easier
Chain: first k -center or facility location,
then k -median, and k -means is last

Embedding into tree metrics
Local Search

LP-based rounding

Filtering
Dual fitting
Randomized rounding

Primal-dual framework
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Clustering with constraints Examples for constraints

Any problems?

ConstraintsConstraints

capacities

Constraints

capacities

lower bounds

Constraints

capacities

lower bounds

outlier

Constraints

capacities

lower bounds

outlier

fairness

pictures: creative

commons from

flickr and pixabay
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Clustering with constraints Examples for constraints

Another motivation

Techniques for non-center based objectives
Reductions to center-based objectives
min sum k -clustering: balanced k -median (cluster cost times |Ci |)
aversion k -clustering: local k -median (centers have a radius)
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Clustering with constraints Examples for constraints

Basic clustering objectives are well studied,
but clustering with constraints is not

Capacitated clustering
Every center c has a maximal capacity u(c) for assigned points

Lower bounded clustering
It is not worthwhile to open a center c unless a lower bound `(c) is met

Clustering with outliers
Up to z outliers may be ignored for the cost

(Exact) Fair clustering
Assume points have a sensitive attribute.
Clusters shall have the same composition wrt this attribute as P.
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Clustering with constraints Upper and lower Bounds

Constraints make problems difficult

Capacitated facility location

, all distances zero
Should be simple?

find facilities with ≥ n total capacity
minimize total opening cost

 Minimum Knapsack Problem

Standard LP: integrality gap

unbounded

n clients, cap. n − 1,
opening cost 0

i1

1 client, cap. n,
opening cost 1

i2zero distance

integral solution: Assign one client to i2  cost 1
fractional solution: Assign all clients to i2 by 1

n  cost 1
n
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Clustering with constraints Upper and lower Bounds

Capacitated clustering: State of the art

Local search based 5-approximation for cap. fac. location [BGG12]
O(1)-approximation with knapsack based LP [ASS14]
capacitated k -center: ≥ 3 [CHK12] and ≤ 9 [ABC+]
No constant factor known for capacitated k -median or k -means
Various bicriteria approximations
Research on easier variants: uniform or soft capacities

[ABC+] An, Bhaskara, Chekuri, Gupta, Madan, Svensson. Centrality of trees for capacitated k-center, Math. Progr. 2015.
[ASS14] An, Singh, Svensson. LP-Based Algorithms for Capacitated Facility Location, FOCS 2014.
[BGG12] Bansal, Garg, Gupta. A 5-Approximation for Capacitated Facility Location, ESA 2012.
[CHK12] Cygan, Hajiaghayi, Khuller. LP rounding for k-centers with non-uniform hard capacities, FOCS 2012.
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Clustering with constraints Upper and lower Bounds

Lower bounds are even worse..

(except for k -center)
Standard LP for facility location has unbounded integrality gap
Standard local search approach yields arbitrarily bad solutions

Lower bounds: State of the art
82.6-approximation for uniform lower bounds and facility loc. [AS12]

O(1) for non-uniform bounds only known for k -center [AS16]

[AS12] Ahmadian, Swamy: Improved approximation guarantees for lower-bounded facility location, WAOA 2012.
[AS16] Ahmadian, Swamy: Approximation Algorithms for Clustering Problems with Lower Bounds and Outliers, ICALP 2016.
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Clustering with constraints Upper and lower Bounds

The happy world of k -center

State of the art for k -center
just k -center: 2-approx. [G85][HS86]

capacitated k -center: 9-approx. [ABCGMS15]
lower bounded k -center: 2-approx. [CGK16]
k -center with outliers: 2-approx. [CGK16]
(exact and balanced) fair k -center with 2 colors: 3-approx. [CKLV17]
(exact) fair k -center with multiple colors: 14-approx.

[ABCGMS15] An, Bhaskara, Chekuri, Gupta, Madan, Svensson: Centrality of trees for capacitated k-center. Math. Prog. 2015.
[CGK16] Chakrabarty, Goyal, Krishnaswamy. The non-uniform k-center problem, ICALP 2016.
[CKLV17] Chierichetti, Kumar, Lattanzi, Vassilvitskii. Fair clustering through fairlets, NIPS 2017.

Solve new problems on k -center first.
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Clustering with constraints Adding uniform lower bounds to k -center
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Clustering with constraints Adding uniform lower bounds to k -center

Adding constraints

Approximation ratios have been optimized for centuries
Constraints require new techniques to transfer results
What if a better algorithm for the unconstrained problem appears?
And what if we want combinations of constraints?

 endless chain of improvements and new problem combinations

Question
Can we add constraints?

Given an approximation algorithm as a subroutine,
can we establish an additional constraint?
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Clustering with constraints Adding uniform lower bounds to k -center

Let’s do that for k -center

Goal
Add uniform lower bound L to k -center with outliers

What makes k -center easy?

Threshold graph

Value of the optimal solution is a pairwise distance!
There are Θ(n2) pairwise distances can guess optimum value τ
Allows to build threshold graph

At most two hops between two points in the same optimum cluster
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Clustering with constraints Adding uniform lower bounds to k -center

Threshold graph

Approximation in [HS86]

Guess correct threshold

Consider two-hop graph

Find maximal
independent set
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Clustering with constraints Adding uniform lower bounds to k -center

Goal
Add uniform lower bound L to k -center with outliers

Main idea

Use subroutine for approximating k -center with outliers
Build a network to move points using the threshold idea
One of two outcomes:

We can successfully establish the lower bound L or
We find a set P ′ that we recluster
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Clustering with constraints Adding uniform lower bounds to k -center

Step 1: Use subroutine to get initial solution

k = 4 centers
z = 4 outliers
L = 5 lower bound
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Clustering with constraints Adding uniform lower bounds to k -center

Step 2: Compute threshold edges
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Clustering with constraints Adding uniform lower bounds to k -center

Step 4: Compute an integral maximum flow
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Clustering with constraints Adding uniform lower bounds to k -center

Step 5: Compute reachable points

and clusters
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Clustering with constraints Adding uniform lower bounds to k -center

Step 5: Recompute solution on P ′!
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Clustering with constraints Adding uniform lower bounds to k -center

Step 4 (again): Compute an integral maximum flow
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Clustering with constraints Adding uniform lower bounds to k -center

Step 6: Success! Move the points wrt the maximum flow
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Clustering with constraints Adding uniform lower bounds to k -center

Some details

Points are only moved once, at the very end!
Recomputations do not increase the factor
After every flow computation, number of clusters (or number of
outliers) decreases ≤ k · z flow computations

Theorem (Rösner, S., 2018)
Let A be an α-approximation algorithm for k -center with outliers.
Then we can compute an (α + 2)-approximation for k -center with
outliers and lower bound L in polynomial time.
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Clustering with constraints Adding uniform lower bounds to k -center
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Clustering with constraints Adding uniform lower bounds to k -center

Follow-up questions

Reduce increase of approximation factor
Non-uniform lower bounds
Other constraints. Fairness works, what about outliers?
k -median? k -means?
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Data streams Data reduction techniques

Last Part: Data reduction

Quick review for k -means
What about constraints?

Big Data

Big Data

many points

Big Data

many points high
dimension

Big Data

coresets high
dimension

Big Data

coresets dim.
reduction
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Data streams Data reduction techniques

Reducing the dimension and number of input points
Coresets / Dim. Red
Reduce complexity,
but approximately preserve k -means cost for all sets of k centers

Definition
Let P ⊂ Rd be a point set. If P ′ ⊂ Rd

and ∆ ∈ R

sat. ∀C ⊂ Rd , |C| = k :

| cost(P,C)− cost(P ′,C)

+ ∆

| ≤ ε · cost(P,C)

and P ′. . .

. . . satisfies that |P ′| � |P|

 then P ′ is a coreset

. . . has intrinsic dimension s for an s � d

 dim. reduction

Input and coreset look alike for every possible solution!
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Data streams Data reduction techniques

Coresets for k -means

Number of points Remarks

[HPM04] O(kε−d log n) First coreset
[FL11] O(dkε−4) Independent of log n
[FSS13], [CMEP15] O(k2ε−5) Independent of d , log n

Dimensionality reduction for k -means

Target dimension Quality quarantee

[JL84] Θ(ε−2 log n) any ε ∈ (0,1)⇒ 1 + ε
[DFKVV04] k only ε = 1 ⇒ 2
[FSS13], [CMEP15] dk/εe any ε ∈ (0,1]⇒ 1 + ε

[CMEP15] Cohen, Elder, Musco, Musco, Persu, Dim. reduction for k-means clustering and low rank approximation, STOC 2015.
[DFKVV04] Drineas, Frieze, Kannan, Vempala, Vinay, Clustering large graphs via the svd, Maschine Learning 2004.
[FL11] Feldman, Langberg, A unified framework for approximating and clustering data, STOC 2011.
[FSS13] Feldman, S., Sohler, Turning Big Data into Tiny Data: Constant-size C. for k-means, PCA and Pr. Cl., SODA 2013.
[HPM04] Har-Peled, Mazumdar, On coresets for k -means and k -median clustering, STOC 2004.
[JL84] Johnson, Lindenstrauss, Extensions of lipschitz mappings into a hilbert space, Contemporary Mathematics 1984.
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Data streams Data reduction techniques

Conversion to a Streaming Algorithm: Merge & Reduce [BS80]
read data in blocks
compute a coreset for
each block→ s
merge and reduce
coresets
in a tree fashion
 space s · log n

Morally: Merge & Reduce causes overhead O(logc n)

Necessary Requirement: Composability
P ′1 and P ′2 coresets for P1 and P2 ⇒ P ′1 ∪ P ′2 coreset for P1 ∪ P2

[BS80] Bentley, Saxe, Decomposable searching problems I: Static-to-dynamic transformation, Journal of Algorithms, 1980.
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Data streams Data reduction techniques

Constraints and Composability

For k -means, coresets are composable because the cost is linear:

cost(P1 ∪ P2,C) = cost(P1,C) + cost(P2,C) ∀P1,P2,C

For problems with constraints, cost can increase or decrease!

lower-bounded k -means with k = 2 and L = 5
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Data streams Data reduction techniques

S., Schwiegelssohn, Sohler, 2018

Composable coresets for fair k -means
Size is O(kε−d log n)

Based on geometric coreset construction

Final open questions

Composable coresets for other constraints?
Smaller size by using sampling?

Thank you for your attention!
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