Simplified Inapproximability of k-means

Melanie Schmidt

Joint work with Euiwoong Lee and John Wright

07.11.2015

Inapproximability of k-means

07.11.2015

0/9



Definition

The k-means problem

Inapproximability of k-means 07.11.2015 1/9



Definition

The k-means problem

@ Given a point set P C RY,

Inapproximability of k-means 07.11.2015 1/9



Definition

The k-means problem

@ Given a point set P C RY,

@ compute a set C C R?
with |C| = k centers

Inapproximability of k-means 07.11.2015 1/9



Definition

The k-means problem

@ Given a point set P C RY,

@ compute a set C C R?
with |C| = k centers

@ which minimizes
cost(P,C) =Y min||p— c||?,
(P.C) gcecnp [
the sum of the squared distances.

Inapproximability of k-means 07.11.2015 1/9



Definition

The k-means problem

@ Given a point set P C RY,

@ compute a set C C R?
with |C| = k centers

@ which minimizes
cost(P,C)=> min||p— c|/?,
(P.C) ,,z,::c I cl
the sum of the squared distances.
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Introduction The k-means problem

i
Complexity

Small dimension d Large dimension d
Small k

Large k

[ACKS15] Awasthi, Charikar, Krishnaswamy, Sinop. The hardness of approximation of euclidean k-means, SoCG 2015.
[ADHPOQ9] Aloise, Deshpande, Hansen, Popat: NP-hardness of Euclidean sum-of-squares clustering, Machine Learning, 2009.
[FL11] Feldman, Langberg, A unified framework for approximating and clustering data, STOC 2011.

[IK194] Inaba, Katoh, Imai: Appl. of Weighted Voronoi Diagrams and Rand. to Variance-Based k-Clustering, SoCG 1994.
[KMN+02] Kanungo, Mount, Netanyahu, Piatko, Silverman, Y. Wu, A local search approx. alg. for k-means clustering, SoCG 2002.
[LSW13] Lee, S. Wright: Improved and Simplified Inapproximability for k-means, CORR 2015.

[M00] Matousek: On approximate geometric k-clustering

[MNV09] Mahajan, Nimbhorkar, Varadarajan, The Planar k-means Problem is NP-Hard, WALCOM 2009.
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@ What is the best possible approximation factor?
@ PTAS for d = 2, constant d?
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APX-hardness of k-means Reduction from vertex cover

Reducing vertex cover (A-free) to k-means
(Awasthi et. al., SoCG 2015)

Vertex Cover instance

Graph G= (V. E)

k-means instance

For e = (i, ), define xe € RIVI by

(Xe)i = (Xe)i = 1 and (xg), = O for £ # i,j

Xe=(0,...,0,1,0,...,0,1.0...,0)
i

1
u
J
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APX-hardness of k-means Reduction from vertex cover

@ star cluster E’ costs |E'| — 1
@ small vertex cover implies k star clusters ~» small cost (m — k)
@ hope: small cost implies many stars and small enough vertex cover

Problem: Triangles

”1‘;263 Cluster cost:
o 3@ (=31
e 101

333
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Inapproximability of k-means



Awasthi et. al., Part |

(1 + ¢)-hardness for vertex cover in A\-free graphs with D - n edges

4
(1 + &')-hardness for k-means with ¢’ € ©(¢/D)

Inapproximability of k-means 07.11.2015 6/9



Awasthi et. al., Part |

(1 + ¢)-hardness for vertex cover in A\-free graphs with D - n edges

4
(1 + &')-hardness for k-means with ¢’ € ©(¢/D)

Awasthi et. al., Part Il

APX-hardness for VC in graphs with max. degree D

J
APX-hardness for VC in A-free graphs with max. degree poly(D, ™)

Inapproximability of k-means 07.11.2015 6/9



Awasthi et. al., Part |

(1 + ¢)-hardness for vertex cover in A\-free graphs with D - n edges

4
(1 + &')-hardness for k-means with ¢’ € ©(¢/D)

Awasthi et. al., Part Il

APX-hardness for VC in graphs with max. degree D

J
APX-hardness for VC in A-free graphs with max. degree poly(D, s~ ")
VC in A-free graphs is 1.36-hard
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(1 + ¢)-hardness for vertex cover in A\-free graphs with D - n edges

4
(1 + &')-hardness for k-means with ¢’ € ©(¢/D)

New Part Il

APX-hardness for VC in graphs that are 4-regular
J

APX-hardness for VC in A\-free graphs and maximum degree 4

Chlebik, Clebikova, 2006

Given a 4-regular graph G, it is NP-hard to distinguish
@ G has a vertex cover of size < amin| V(A)|

@ every vertex cover in G has size > amax|V(A)|
Here, amax/amin > 1.0192.
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APX-hardness of k-means Reduction from vertex cover

Replace every edge by three edges (~ +4n vertices and +4n edges)

—————o = 0—0—0—0
Minimum vertex cover size increases by 2n:
— 9o —0—0o—0—o

o o o0 o o o0 o

~» NP-hard to decide between < (amin + 2)n and > (amax + 2)n
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@ Let E' with |E’| > m/2 be
the edges of a large cut

@ Pick E; C E’ with
|E1|=m/2=n
(Eq is bipartite)

@ nremaining edges, E>

@ Only split edges in Eo

~+ 2n new edges and vertices, min. vertex cover size increases by n
~ Gap between (amin + 1)n and (amax + 1)n
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Awasthi et. al., Part |

(1 + €)-hardness for vertex cover in A\-free graphs with D - n edges

4
(1 + ¢’)-hardness for k-means with ' € ©(¢/D)

It is NP-hard to approximate k-means within a factor of 1.0013.

Thanks!
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