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: :
Metric Assigned Probabilistic k-Median Clustering

: :

Clustering

— Partition a set of given objects into subsets of similar objects
— Similarity or Dissimilarity is measured by a distance function
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Metric Assigned Probabilistic k-Median Clustering
:

Clustering

— Partition a set of given objects into subsets of similar objects
— Similarity or Dissimilarity is measured by a distance function

Metric k-median clustering
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Metric Assigned Probabilistic k-Median Clustering
:

Clustering

— Partition a set of given objects into subsets of similar objects
— Similarity or Dissimilarity is measured by a distance function

Metric k-median clustering
Given a set of points P from a metric space M = (X, D), find
@ aset C:={cy,...,cx} € X minimizing
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Metric Assigned Probabilistic k-Median Clustering

Clustering

— Partition a set of given objects into subsets of similar objects
— Similarity or Dissimilarity is measured by a distance function

Metric k-median clustering
Given a set of points P from a metric space M = (X, D), find
@ aset C:={cy,...,cr} € X minimizing

n
cost(P,C) := > _minD(p;, ).
P ceC
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: :
Metric Assigned Probabilistic k-Median Clustering

: :

Probabilistic Data
@ Sensor data
o Database joins
@ Movement data
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: :
Metric Assigned Probabilistic k-Median Clustering

: :

Probabilistic Data
@ Sensor data
o Database joins
@ Movement data

Probabilistic points
For us, a probabilistic point is a discrete probability distribution
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: :
Metric Assigned Probabilistic k-Median Clustering

: :

The probabilistic k-median problem
Given
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: :
Metric Assigned Probabilistic k-Median Clustering

: :

The probabilistic k-median problem
Given
o finite set X := {xq, ..., xn} from metric space M = (X, D),

Probabilistic k-Median Clustering in Data Streams WAOA 2012
S




Clustering and Probabilistic Inputs Data Streams and Coresets Probabilistic Coresets Euclidean k-median
[e]e] o) [e]e]e} 000 000

: :
Metric Assigned Probabilistic k-Median Clustering

: :

The probabilistic k-median problem

Given
o finite set X := {x1, ..., xm} from metric space M = (X, D),
o setof nodes V: {vq,...,vp}
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Metric Assigned Probabilistic k-Median Clustering

The probabilistic k-median problem

Given
o finite set X := {xq, ..., xm} from metric space M = (X, D),
o setof nodes V: {vq,...,vp}

@ probability distribution D; for each node v;, given by
realization probabilities pj for all j € [m], >4 p; < 1,
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Metric Assigned Probabilistic k-Median Clustering

The probabilistic k-median problem

Given
o finite set X := {xq, ..., xm} from metric space M = (X, D),
o setof nodes V: {vq,...,vp}

@ probability distribution D; for each node v;, given by
realization probabilities pj for all j € [m], >4 p; < 1,
find a set C .= {cy,..., ¢k} € X that minimizes

n m
Ep [cost(V, C)] = p:r\r)ijC; j;p,-, D0, ().
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Related work: Clustering probabilistic Data

Cormode, McGregor (PODS 2008)
@ (1 + ¢)-approximation for a variant of the above problem
@ (1 + ¢)-approximation for uncertain k-means
@ Constant approximation for (assigned) metric k-median
@ Bicriteria approximations for uncertain metric k-center

Guha and Munagala (PODS 2009)
@ Constant approximation for uncertain metric k-center
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: :
Coresets for the probabilistic k-median problem

: :

Data Streams
@ large amounts of data
@ data arrives in a stream
@ only one pass over the data allowed
@ limited storage capacity
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: :
Coresets for the probabilistic k-median problem

: :

Data Streams
@ large amounts of data
@ data arrives in a stream
@ only one pass over the data allowed
@ limited storage capacity

One way to deal with data streams: Coresets J

: :
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: :
Coresets for the probabilistic k-median problem

: :

Coresets
@ small summary of given data
o typically of constant or polylogarithmic size
@ can be used to approximate the cost of the original data
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Coresets for the probabilistic k-median problem

Coresets
@ small summary of given data
o typically of constant or polylogarithmic size
@ can be used to approximate the cost of the original data

Merge & Reduce
@ read data in blocks

- @ compute a coreset
for each block — s

@ merge coresets in a

OO DD OO HH  treefashion

@ ~» space s-logn
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Coresets for the probabilistic k-median problem

Related work: Coreset constructions

Agarwal, Har-Peled and Varadarajan: Coreset concept

Badoiu, Har-Peled and Indyk:
First coreset construction for clustering problems

Har-Peled and Mazumdar, Coreset of size O(ke~?log n) for
Euclidean k-median, maintainable in data streams

Har-Peled, Kushal: Coreset of size O(k?c~?) for Euclidean
k-median

Frahling and Sohler: Coreset of size O(ke~?log n) for Euclidean
k-median, insertion-deletion data streams

Chen: Coresets for metric and Euclidean k-median and
k-means, polynomial in d, lognand ¢~

Langberg, Schulman: O(d?k®/&?)
Feldman, Langberg: O(dk/£?)
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Our goal
Compute a coreset for the probabilistic k-median problem J
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Our goal
Compute a coreset for the probabilistic k-median problem

Coresets

Given a set of probabilistic points V, a weighted subset U is a
(k, =)-coreset if for all sets C of k centers it holds

|Ep [costw (U, C)] — Ep [cost(V, C)]| < cEp [cost(V, C)]

where Ep [costy (U, C)] := rDm ZUZpU (vi)D(x;, p(vi))-
vieUj
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Our goal
Compute a coreset for the probabilistic k-median problem

Coresets

Given a set of probabilistic points V, a weighted subset U is a
(k, =)-coreset if for all sets C of k centers it holds

|Ep [costw (U, C)] — Ep [cost(V, C)]| < cEp [cost(V, C)]

where Ep [costy (U, C)] := rDm ZUZpU (vi)D(x;, p(vi))-
vieUj

'\U| and support of probability distributions should be small

J
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Metric k-median

Idea
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Metric k-median

ldea
@ Extend cost function to a metric
@ (so far only defined for a tuple of a node and a center)
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Metric k-median

ldea
@ Extend cost function to a metric
@ (so far only defined for a tuple of a node and a center)
@ Point ¢ € X ~» node with all probability at ¢
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Metric k-median

ldea
@ Extend cost function to a metric
@ (so far only defined for a tuple of a node and a center)
@ Point ¢ € X ~» node with all probability at ¢
@ Generalization of cost function to distance between nodes? |

@ Expected distance?
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Metric k-median

Idea
@ Extend cost function to a metric
@ (so far only defined for a tuple of a node and a center)
@ Point ¢ € X ~~ node with all probability at ¢
@ Generalization of cost function to distance between nodes? |

@ Expected distance?

@ Expected distance between two copies of the same
probabilistic node is not zero
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Metric k-median

Idea
@ Extend cost function to a metric
@ (so far only defined for a tuple of a node and a center)
@ Point ¢ € X ~~ node with all probability at ¢
@ Generalization of cost function to distance between nodes? |

@ Expected distance?

@ Expected distance between two copies of the same
probabilistic node is not zero

@ ~- expected distance is not a metric
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Metric k-median

ldea
@ Extend cost function to a metric
@ (so far only defined for a tuple of a node and a center)
@ Point ¢ € X ~» node with all probability at ¢
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Metric k-median

ldea
@ Extend cost function to a metric
@ (so far only defined for a tuple of a node and a center)
@ Point ¢ € X ~» node with all probability at ¢
@ Generalization of cost function to distance between nodes? |

0.2 3004 — Earth Mover
Distance (EMD)
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o EMD is a metric
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@ EMD is a metric
@ EMD is a generalization of the cost function
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@ EMD is a metric
@ EMD is a generalization of the cost function
o for each x € C, create an artificial node ~~ C’
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o EMD is a metric
@ EMD is a generalization of the cost function
o for each x € C, create an artificial node ~~ C’

@ A deterministic (k, ¢)-coreset for V with center set ¢’ and
metric EMD is a probabilistic (k, ¢)-coreset
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@ EMD is a generalization of the cost function
o for each x € C, create an artificial node ~~ C’

@ A deterministic (k, ¢)-coreset for V with center set ¢’ and
metric EMD is a probabilistic (k, ¢)-coreset

if we thin out the probability distributions and
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o EMD is a metric
@ EMD is a generalization of the cost function
o for each x € C, create an artificial node ~~ C’

@ A deterministic (k, ¢)-coreset for V with center set ¢’ and
metric EMD is a probabilistic (k, ¢)-coreset

if we thin out the probability distributions and
handle non-uniform realization probabilities.
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o EMD is a metric
@ EMD is a generalization of the cost function
o for each x € C, create an artificial node ~~ C’

@ A deterministic (k, ¢)-coreset for V with center set ¢’ and
metric EMD is a probabilistic (k, ¢)-coreset

if we thin out the probability distributions and
handle non-uniform realization probabilities.

(Compute EMD efficiently!)
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Partitioning nodes

Does the same approach work in the Euclidean case? J
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: :
Partitioning nodes

: :

Does the same approach work in the Euclidean case? J

@ in the general metric case, C is usually finite (e.g. P)
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: :
Partitioning nodes

: :

Does the same approach work in the Euclidean case? )

@ in the general metric case, C is usually finite (e.g. P)
o in the Euclidean case, one usually sets C = RY.
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Partitioning nodes

Does the same approach work in the Euclidean case?

Euclidean k-median
[ le]e}

@ in the general metric case, C is usually finite (e.g. P)
@ in the Euclidean case, one usually sets C = RY.
algorithms for the general case do not work here
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Partitioning nodes

Does the same approach work in the Euclidean case? J

@ in the general metric case, C is usually finite (e.g. P)
@ in the Euclidean case, one usually sets C = RY.
algorithms for the general case do not work here

even though probabilistic Euclidean k-median can be seen
as deterministic metric k-median, we cannot use
deterministic algorithms
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Partitioning nodes

Does the same approach work in the Euclidean case? J

@ in the general metric case, C is usually finite (e.g. P)
@ in the Euclidean case, one usually sets C = RY.
algorithms for the general case do not work here

even though probabilistic Euclidean k-median can be seen
as deterministic metric k-median, we cannot use
deterministic algorithms

Develop coreset construction

Use deterministic coreset construction by Chen
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Partitioning nodes

Chen (2006)
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Partitioning nodes

Chen (2006)
@ compute bicriteria approximation
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Probabilistic Coresets Euclidean k-median
Partitioning nodes

Chen (2006)
@ compute bicriteria approximation

@ partition input points into subsets of points which are close
to each other compared to the optimal clustering cost

@®)@)
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Partitioning nodes

Chen (2006)
@ compute bicriteria approximation

@ partition input points into subsets of points which are close
to each other compared to the optimal clustering cost

@ sample representatives from each subset
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Partitioning nodes

Chen (2006)
@ compute bicriteria approximation

@ partition input points into subsets of points which are close
to each other compared to the optimal clustering cost

@ sample representatives from each subset
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Partitioning nodes

Chen (2006)
@ compute bicriteria approximation

@ partition input points into subsets of points which are close
to each other compared to the optimal clustering cost

@ sample representatives from each subset
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Partitioning nodes

Chen (2006)
@ compute bicriteria approximation

@ partition input points into subsets of points which are close
to each other compared to the optimal clustering cost

@ sample representatives from each subset
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Partitioning nodes

Chen (2006)
@ compute bicriteria approximation

@ partition input points into subsets of points which are close
to each other compared to the optimal clustering cost

@ sample representatives from each subset
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Partitioning nodes

Chen (2006)
@ compute bicriteria approximation

@ partition input points into subsets of points which are close
to each other compared to the optimal clustering cost

@ sample representatives from each subset

A,
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Partitioning nodes

Theorem
We can compute a probabilistic (k, €)-coreset of size

O(k26_3 : pOIyIOg(|C|, n, 57 1/pmin))
for the probabilistic metric k-median problem and of size
O(k?e~2d - polylog(n, 6, =", 1/Prin))

for the probabilistic Euclidean k-median problem.
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Partitioning nodes

Theorem
We can compute a probabilistic (k, €)-coreset of size

O(k26_3 : pOIyIOg(|C|, n, 57 1/pmin))
for the probabilistic metric k-median problem and of size
O(k?e~2d - polylog(n, 6, =", 1/Prin))

for the probabilistic Euclidean k-median problem.

Euclidean k-median
ooe

Thank you for your attention!
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