A Local-Search Algorithm for Steiner Forest

M. Groß, A. Gupta, A. Kumar, J. Matuschke, D. Schmidt, J. Verschae M. Schmidt

OR 2017, Berlin

September 8th 2011

Local Search for Steiner Forest

The Steiner Forest Problem

Input

 $\begin{array}{ll} \mathsf{Graph} & G = (V, E) \\ \mathsf{Terminal pairs} & (s_1, \bar{s}_1), \dots, (s_k, \bar{s}_k) \in V \times V \\ \mathsf{Edge costs} & c : E \to \mathbb{R}^+ \end{array}$

Output

Minimum cost forest $F \subseteq E$ containing $s_i \cdot \bar{s}_i$ -path for all $i = 1, \dots, k$

The Steiner Forest Problem

Input

 $\begin{array}{ll} \mathsf{Graph} & G = (V, E) \\ \mathsf{Terminal pairs} & (s_1, \bar{s}_1), \dots, (s_k, \bar{s}_k) \in V \times V \\ \mathsf{Edge costs} & c : E \to \mathbb{R}^+ \end{array}$

Output

Minimum cost forest $F \subseteq E$ containing $s_i \cdot \bar{s}_i$ -path for all $i = 1, \dots, k$

The Steiner Forest Problem

Input

 $\begin{array}{ll} \mathsf{Graph} & G = (V, E) \\ \mathsf{Terminal pairs} & (s_1, \bar{s}_1), \dots, (s_k, \bar{s}_k) \in V \times V \\ \mathsf{Edge costs} & c : E \to \mathbb{R}^+ \end{array}$

Output

Minimum cost forest $F \subseteq E$ containing $s_i \cdot \bar{s}_i$ -path for all $i = 1, \dots, k$

The Steiner Tree Problem

Input

Graph	G = (V, E)
Terminals	$s_1,\ldots,s_k\in V$
Edge costs	$c: E \to \mathbb{R}^+$

Output

Minimum cost tree $T \subseteq E$ containing all s_i

The Minimum Spanning Tree Problem

Input

Graph	G = (V, E)
Terminals	V
Edge costs	$c: E \to \mathbb{R}^+$

Output

Minimum cost tree $T \subseteq E$ containing all v

Problem Definitions

Known Simplifications

First

Use Metric Completion of G
ightarrow no loss in the approximation guarantee

First

Use Metric Completion of G
ightarrow no loss in the approximation guarantee

Second

Ignore Steiner nodes \rightarrow factor 2 in the approximation guarantee

First

Use Metric Completion of $G \rightarrow$ no loss in the approximation guarantee

Second

Ignore Steiner nodes \rightarrow factor 2 in the approximation guarantee

Simple 2-approximation for Steiner Tree

Compute MST on the metric completion of G

First

Use Metric Completion of $G \rightarrow$ no loss in the approximation guarantee

Second

Ignore Steiner nodes \rightarrow factor 2 in the approximation guarantee

Simple 2-approximation for Steiner Tree

Compute MST on the metric completion of G

Example: Use Kruskal \rightarrow Greedy 2-approximation for Steiner Tree

Known Results

Steiner Tree Steiner Forest

Primal-Dual

LP Rounding

involved combinatorial

Greedy / Gluttonous

Local Search

Known Results

Steiner Tree Steiner Forest

Primal-Dual

LP Rounding

involved combinatorial

Greedy / Gluttonous

2

Local Search

Known	Resu	ts
-------	------	----

	Steiner Tree	Steiner Forest
	1.39 [BGRS13]	
natorial	1.55 [RS05]	
onous	2	

Primal-Dual LP Rounding

involved combinatorial

Greedy / Gluttonous

Local Search

Known	Resu	ts
-------	------	----

	Steiner Tree	Steiner Forest
Primal-Dual	$2 - \frac{2}{n}$	$2 - \frac{2}{n}$ [AKR95,GW95]
LP Rounding	1.39 [BGRS13]	
involved combinatorial	1.55 [RS05]	
Greedy / Gluttonous	2	
Local Search		

	Known	Results	5
--	-------	---------	---

	Steiner Tree	Steiner Forest
Primal-Dual	$2 - \frac{2}{n}$	$2 - \frac{2}{n}$ [AKR95,GW95]
LP Rounding	1.39 [BGRS13]	
involved combinatorial	1.55 [RS05]	
Greedy / Gluttonous	2	96 [GK15]
Local Search		

Known F	Results
---------	---------

Steiner Tree	Steiner Forest
$2 - \frac{2}{n}$	$2 - \frac{2}{n}$ [AKR95,GW95]
1.39 [BGRS13]	
1.55 [RS05]	
2	96 [GK15]
2	
	Steiner Tree $2 - \frac{2}{n}$ 1.39 [BGRS13] 1.55 [RS05] 2 2

	Steiner Tree	Steiner Forest
Primal-Dual	$2 - \frac{2}{n}$	$2 - \frac{2}{n}$ [AKR95,GW95]
LP Rounding	1.39 [BGRS13]	
involved combinatorial	1.55 [RS05]	
Greedy / Gluttonous	2	96 [GK15]
Local Search	2	?

Known R	esults
---------	--------

	Steiner Tree	Steiner Forest
Primal-Dual	$2 - \frac{2}{n}$	$2 - \frac{2}{n}$ [AKR95,GW95]
LP Rounding	1.39 [BGRS13]	
involved combinatorial	1.55 [RS05]	
Greedy / Gluttonous	2	96 [GK15]
Local Search	2	69 [this work]

	Steiner Tree	Steiner Forest
Primal-Dual	$2 - \frac{2}{n}$	$2 - \frac{2}{n}$ [AKR95,GW95]
LP Rounding	1.39 [BGRS13]	
involved combinatorial	1.55 [RS05]	
Greedy / Gluttonous	2	96 [GK15]
Local Search	2	69 [this work]

Why local search?

Knov	vn Results	

	Steiner Tree	Steiner Forest
Primal-Dual	$2 - \frac{2}{n}$	$2 - \frac{2}{n}$ [AKR95,GW95]
LP Rounding	1.39 [BGRS13]	
involved combinatorial	1.55 [RS05]	
Greedy / Gluttonous	2	96 [GK15]
Local Search	2	69 [this work]

Why local search?

• powerful technique, often used in practice, hope for new insights

Known	Results	

Ρ

ir

G

L

	Steiner Tree	Steiner Forest
rimal-Dual	$2 - \frac{2}{n}$	$2 - \frac{2}{n}$ [AKR95,GW95]
P Rounding	1.39 [BGRS13]	
volved combinatorial	1.55 [RS05]	
reedy / Gluttonous	2	96 [GK15]
ocal Search	2	69 [this work]

Why local search?

• powerful technique, often used in practice, hope for new insights

• dynamic Steiner Forest problem (no constant approximation known)

nown Results		
	Steiner Tree	Steiner Forest
Primal-Dual	$2 - \frac{2}{n}$	$2 - \frac{2}{n}$ [AKR95,GW95]
LP Rounding	1.39 [BGRS13]	
involved combinatorial	1.55 [RS05]	
Greedy / Gluttonous	2	96 [GK15]
Local Search	2	69 [this work]

Why local search?

• powerful technique, often used in practice, hope for new insights

• dynamic Steiner Forest problem (no constant approximation known)

• survivable network design problem (no combinatorial algorithm known)

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Reach next feasible solution by executing single edge swaps. 2
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap → Local optimum reached.

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap → Local optimum reached.

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap → Local optimum reached.

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap → Local optimum reached.

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap → Local optimum reached.

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Q Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.

MST

Local Search

Example: Local search for metric MST

- Start from arbitrary feasible solution.
- Reach next feasible solution by executing single edge swaps.
- Iterate until no improving swap \rightsquigarrow Local optimum reached.
- For MST, this is optimal!
- \rightarrow 2-approximation for Steiner Tree

Building a local search algorithm: Moves

edge/edge swap

— unchanged

······ added

removed
Choose parameter $k \in \omega(1)$ and number of terminals $t \in \omega(k)$

Choose parameter $k \in \omega(1)$ and number of terminals $t \in \omega(k)$

Choose parameter $k \in \omega(1)$ and number of terminals $t \in \omega(k)$

Choose parameter $k \in \omega(1)$ and number of terminals $t \in \omega(k)$

Need to remove $\omega(1)$ edges.

- Adding the long edge costs t
- Removing all short edges gains t^2/k , removing < k edges gains < t
- Unless > k edges are removed, no improving move, i.e., local optimum
- Local OPT $> t^2/k$ vs. global OPT < 2t

Building a local search algorithm: Moves

edge/edge swap

unchanged

······ added

removed

Building a local search algorithm: Moves

edge/edge swap

— unchanged

······ added

removed

Building a local search algorithm: Moves

removed

Local Search for Steiner Forest

Ignore Steiner nodes (→ factor 2)

- Ignore Steiner nodes (→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)

- Ignore Steiner nodes (→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)
- Perform path/set moves until local optimum

- Ignore Steiner nodes (→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)
- Perform path/set moves until local optimum
- Drop inessential edges

- Ignore Steiner nodes (→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)
- Perform path/set moves until local optimum
- Drop inessential edges

Inessential edges

An edge is inessential if the solution is feasible without it.

- Ignore Steiner nodes (→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)
- Perform path/set moves until local optimum
- Drop inessential edges

Inessential edges

An edge is inessential if the solution is feasible without it.

Spoiler

This does not work yet.

Spoiler

This does not work yet.

For now

Analysis of a case where it does work

Spoiler

This does not work yet.

For now

Analysis of a case where it does work

Setting

- ullet solution ${\mathcal A}$
- optimum solution OPT
- ullet $\mathcal A$ is locally optimal with respect to edge/set moves
- \mathcal{A} is a tree!

For now: Local Optimum is a Tree

Strategy

- Charge edges of local opt \mathcal{A} edges of global OPT.
- \bullet Recall: ${\cal A}$ is a tree, inessential edges dropped, no Steiner nodes

Tree case

For now: Local Optimum is a Tree

Strategy

- Charge edges of local opt \mathcal{A} edges of global OPT.
- Recall: \mathcal{A} is a tree, inessential edges dropped, no Steiner nodes

Charging Argument

• Find assignment of \mathcal{A} -edges to OPT-edges such that no OPT-edge is assigned more than $\frac{7}{2}$ its cost.

$$\sum_{e \in \mathcal{A}} c(e) \leq \frac{7}{2} \sum_{e \in OPT} c(e)$$

• Assignment: Capacitated matching in a bipartite graph.

Edges *e* and *f* compatible w.r.t. OPT if...

Edges *e* and *f* compatible w.r.t. OPT if...

Edges *e* and *f* compatible w.r.t. OPT if...

Edges *e* and *f* compatible w.r.t. OPT if...

No OPT-edges from L to M nor from M to R.

Edges *e* and *f* compatible w.r.t. OPT if...

No OPT-edges from L to M nor from M to R.

Edges *e* and *f* compatible w.r.t. OPT if...

No OPT-edges from L to M nor from M to R.

Set of compatible edges behaves 'like one edge'

- Compatibility \sim_{cp} is equivalence relation on edges
- Equivalence classes lie on paths
- Edge/Set swap can remove all edges of a class together

Edges *e* and *f* compatible w.r.t. OPT if...

No OPT-edges from L to M nor from M to R.

Set of compatible edges behaves 'like one edge'

- Compatibility \sim_{cp} is equivalence relation on edges
- Equivalence classes lie on paths
- Edge/Set swap can remove all edges of a class together

Morally true: Inessential edges form one additional equivalence class

Charging Argument

Find assignment of A-edges to OPT-edges such that no OPT-edge is assigned more than $\frac{7}{2}$ its cost.

$$\sum_{e \in \mathcal{A}} c(e) \leq \frac{7}{2} \sum_{e \in OPT} c(e)$$

Charging is done with a Hall-type argument; all edges of an equivalence class are charged together

Charging Argument

Find assignment of A-edges to OPT-edges such that no OPT-edge is assigned more than $\frac{7}{2}$ its cost.

$$\sum_{e \in \mathcal{A}} c(e) \leq \frac{7}{2} \sum_{e \in OPT} c(e)$$

Charging is done with a Hall-type argument; all edges of an equivalence class are charged together

Recall

Any minimum spanning tree on the terminals is a 2-approximation for Steiner Tree.

Charging Argument

Find assignment of A-edges to OPT-edges such that no OPT-edge is assigned more than $\frac{7}{2}$ its cost.

$$\sum_{e \in \mathcal{A}} c(e) \leq \frac{7}{2} \sum_{e \in OPT} c(e)$$

Charging is done with a Hall-type argument; all edges of an equivalence class are charged together

Recall

Any minimum spanning tree on the terminals is a 2-approximation for Steiner Tree.

Charging argument yields:

If a spanning tree on the terminals is locally optimal wrt edge/set swaps then it is a 7-approximation for Steiner Forest.

- A: solid edges, OPT: dashed edges
- Solid edges cost 4, dashed edges cost 1

- A: solid edges, OPT: dashed edges
- Solid edges cost 4, dashed edges cost 1
- Locally optimal for many simple swaps

- A: solid edges, OPT: dashed edges
- Solid edges cost 4, dashed edges cost 1
- Locally optimal for many simple swaps

- A: solid edges, OPT: dashed edges
- Solid edges cost 4, dashed edges cost 1
- Locally optimal for many simple swaps
- Factor is 36/17, but:
- More general version of this example gives Ω(log n) lower bound

- A: solid edges, OPT: dashed edges
- Solid edges cost 4, dashed edges cost 1
- Locally optimal for many simple swaps
- Factor is 36/17, but:
- More general version of this example gives Ω(log n) lower bound
- Reason lies in high girth

Potential function

Potential function

- Need a move that connects components
- but just adding edges always increases the cost
- change objective for local search: potential function
Potential function

- Need a move that connects components
- but just adding edges always increases the cost
- change objective for local search: potential function

Width of a (sub)tree T:

$$w(T) = \max_{\text{terminal pair } s_i, \bar{s}_i \text{ in } T} c(\{s_i, \bar{s}_i\})$$

Our potential adds the width:

$$\phi(T) := w(T) + \sum_{e \in E(T)} c(e)$$

Forest: Add $\phi(T)$ for all subtrees T.

Improving moves

- unchanged

······added

removed

Improving moves

• Ignore Steiner nodes (\rightsquigarrow factor 2)

- Ignore Steiner nodes (\rightsquigarrow factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)

- Ignore Steiner nodes (~→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)
- Perform path/set moves and connecting moves until local optimum,

- Ignore Steiner nodes (~→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)
- Perform path/set moves and connecting moves until local optimum, hereby evaluate solutions with respect to potential function

- Ignore Steiner nodes (~→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)
- Perform path/set moves and connecting moves until local optimum, hereby evaluate solutions with respect to potential function
- Drop inessential edges

- Ignore Steiner nodes (~→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)
- Perform path/set moves and connecting moves until local optimum, hereby evaluate solutions with respect to potential function
- Drop inessential edges

Theorem

There is a non-oblivious local search algorithm for the Steiner Forest Problem with a constant locality gap.

- Ignore Steiner nodes (~→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)
- Perform path/set moves and connecting moves until local optimum, hereby evaluate solutions with respect to potential function
- Drop inessential edges

Theorem

There is a non-oblivious local search algorithm for the Steiner Forest Problem with a constant locality gap.

It can be implemented to run in polynomial time.

- Ignore Steiner nodes (~→ factor 2)
- Start with some feasible solution on terminals (e.g., MST, direct connections)
- Perform path/set moves and connecting moves until local optimum, hereby evaluate solutions with respect to potential function
- Drop inessential edges

Theorem

There is a non-oblivious local search algorithm for the Steiner Forest Problem with a constant locality gap.

It can be implemented to run in polynomial time.

Thank you for your attention!