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The Steiner Forest Problem The Steiner Tree Problem

Input
Graph G=(V.F)
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No pairs, connect set of terminals by a tree.

Terminal pairs (s1,51),...,(Sk, Sp) €V XV

Edge costs c¢: EF — R™

Output

Known algorithms for Steiner Forest:
e 2-approximable, [AKR95, GW95], LP-based

Minimum cost forest F' C E containing an e Non-LP-based 96-approximation [GK2014],

s;-S;-path forallz=1,... k

Width of a (sub)tree T"

terminal pair s;,5; in T’

Our potential adds the width:

H(T) =w(T)+ Y cle)

edge/edge swap  edge/set swap

greedy (gluttonous) algorithm

There is a non-oblivious local search algorithm for the
Steiner Forest Problem with a constant locality gap.

The MST Problem

No terminals, connect all nodes in V.

Want: Local Search Algorithm for Steiner
Forest (inspired by simple algorithm for MST!)
Some simplifying assumptions:

® can assume that ¢ is metric

e ignore non-terminal nodes ~~ factor 2

Two edges e and f are compatible wrt OPT if there are no OPT-edges
w(T) = max c({s:,5}) e Optimize ¢ ~~ non-oblivious local search between L and M and no OPT-edges between M and R.

e Observe: At most two times the
connection cost

e After optimization, drop ‘useless’ edges
(called inessential)

e compatibility is an equivalence relation

e equivalence classes lie on paths, behave ‘like one edges’
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path/set swap  connecting move v removed

¢ terminal pairs

Assume that we only use path/set swaps.
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Solid edges cost 4, dashed edges
cost 1. No helpful path/set swap.

— oo Charging a locally opt tree A to OPT

e Find assignment of A-edges to OPT-edges such that no OPT-edge is
assigned more than % its cost.

Y ele) <t 3 ele)

ec B A ecOPT

e Assignment: Capacitated perfect matching in a bipartite graph.

Assume that we on|y use sing|e edge swaps eq. classes OPT-edges eq. classes OPTC-Dedges
or swaps that add/delete at most a \
constant number of edges. O O+ 30
Consider the example on the left: X | om
e choose k € w(1) and ¢ € w(k) O’/
elocal OPT costs /?/k+ ¢ — 1> (*/k
e OPT costs / + /0 —1 < 2/
o factor > (/(2k) ~~ is in w(1) Left: node ag for each equiv. class S Show: | X| < %|N(X)\ for all X
Right: node b for each f €OPT Then: Hall's Theorem yields assignment

e G = (V,FE): a 3-regular graph with girth g = clogn.
(Such graphs exist, see [Biggs 1998].)

e OPT: A spanning tree 17" in G. Always feasible!
All edges in E(T) cost 1 ~» OPT costs n — 1.

e I The non-tree edges E\ E(T'). These edges cost g/4.

e M: Any maximum matching in E’. Endpoints of each

e Fix some set X. Contract all equivalence classes outside of X!

e Note: All OPT edges that survive are in N(X).
e Count all OPT edges that survived. Need to find | X|/c OPT edges.

e Concept of representatives

e | eaves always have an O PT-edge: Otherwise, inessential edge!

edge form a terminal pair. e Representatives of degree 2 have an OPT edge

e Observe: M is feasible. Degree bound ensures that e There are not too many nodes of higher degree!

(M| > n/10. Thus, M costs Q2(nlogn).

These arguments give guarantee 4, but we can do slightly better.




