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The Steiner Forest Problem

Input
Graph G = (V,E)
Terminal pairs (s1, s̄1), . . . , (sk, s̄k) ∈ V × V
Edge costs c : E → R+

Output
Minimum cost forest F ⊆ E containing an
si-s̄i-path for all i = 1, . . . , k

The Steiner Tree Problem

No pairs, connect set of terminals by a tree.

The MST Problem

No terminals, connect all nodes in V .

Known algorithms for Steiner Forest:
• 2-approximable, [AKR95, GW95], LP-based

•Non-LP-based 96-approximation [GK2014],
greedy (gluttonous) algorithm

Want: Local Search Algorithm for Steiner
Forest (inspired by simple algorithm for MST!)
Some simplifying assumptions:

• can assume that c is metric

• ignore non-terminal nodes  factor 2

There is a non-oblivious local search algorithm for the
Steiner Forest Problem with a constant locality gap.
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Assume that we only use single edge swaps
or swaps that add/delete at most a
constant number of edges.
Consider the example on the left:

• choose k ∈ ω(1) and ` ∈ ω(k)

• local OPT costs `2/k + `− 1 > `2/k

•OPT costs ` + `− 1 < 2`

• factor > `/(2k)  is in ω(1)

edge/edge swap edge/set swap path/set swap connecting move

unchanged

added

removed

•G = (V,E): a 3-regular graph with girth g = c log n.
(Such graphs exist, see [Biggs 1998].)

•OPT: A spanning tree T in G. Always feasible!
All edges in E(T ) cost 1  OPT costs n− 1.

•E ′: The non-tree edges E\E(T ). These edges cost g/4.

•M : Any maximum matching in E ′. Endpoints of each
edge form a terminal pair.

•Observe: M is feasible. Degree bound ensures that
|M | ≥ n/10. Thus, M costs Ω(n log n).

Solid edges cost 4, dashed edges
cost 1. No helpful path/set swap.

Assume that we only use path/set swaps.

Two edges e and f are compatible wrt OPT if there are no OPT-edges
between L and M and no OPT-edges between M and R.
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• compatibility is an equivalence relation

• equivalence classes lie on paths, behave ‘like one edges’

Charging a locally opt tree A to OPT
• Find assignment of A-edges to OPT-edges such that no OPT-edge is

assigned more than 7
2 its cost.∑

e∈E[A]

c(e) ≤ 7

2

∑
e∈OPT

c(e)

•Assignment: Capacitated perfect matching in a bipartite graph.
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eq. classes OPT -edges

Left: node aS for each equiv. class S

Right: node bf for each f ∈OPT

Show: |X| ≤ 7
2|N(X)| for all X

Then: Hall’s Theorem yields assignment

• Fix some set X . Contract all equivalence classes outside of X!

•Note: All OPT edges that survive are in N(X).

•Count all OPT edges that survived. Need to find |X|/c OPT edges.

•Concept of representatives

• Leaves always have an OPT -edge: Otherwise, inessential edge!

•Representatives of degree 2 have an OPT edge

•There are not too many nodes of higher degree!

These arguments give guarantee 4, but we can do slightly better.

Width of a (sub)tree T :

w(T ) = max
terminal pair si,s̄i in T

c({si, s̄i})

Our potential adds the width:

φ(T ) := w(T ) +
∑
e∈E(T )

c(e)

Forest: Add φ(T ) for all subtrees T .

•Optimize φ  non-oblivious local search

•Observe: At most two times the
connection cost

•After optimization, drop ‘useless’ edges
(called inessential)
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