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Introduction The k-means problem

The k-means problem

o Given a point set P C RY,

@ compute a set C C R?
with |C| = k centers

@ which minimizes cost(P, C)

=Y min|lp - cl?,
ceC
peP
the sum of the squared
distances.

@ induces a partitioning of the
input point set
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Dimensionality reduction
Replace P by a point set Q of smaller intrinsic dimension
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Dimensionality reduction
P c RY is replaced by Q c R of smaller intrinsic dimension such that

|cost(Q, C) — cost(P, C)| < ¢ - cost(P, C)

holds for all sets C c RY of k centers.
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In the following
@ Facts on k-means and JL result

@ Joint work with Dan Feldman and Christian Sohler
@ STOC ’15 paper due to Cohen et. al.
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Fact 1 [Foklore?]
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Such a map can be found in randomized polynomial time.
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Johnson, Lindenstrauss, 1984

Givene € (0,1), thereis an r € O(=—?log n) and a linear map
7 :RY — R’ such that for all x, y € P:

(1 = )lIx = yI? < llm(x) =7 (¥)II? < (1 +&)llx = yII2.

Such a map can be found in randomized polynomial time.

Lower Bound for JL-type results: Larsen, Nelson, 2014

Forany d > 1 and ¢ € (0,1/2), there is a point set X c R? such that
o |X| = doM

o ifalinear = : RY — R’ provides the JL guarantee for X, then
r € Q(min{d,e?log n})

v
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Dimensionality reductions for k-means The Johnson-Lindenstrauss Lemma

Lower Bound of Q(s~2log n) for JL-type results
~ |s this a lower bound for the k-means problem, too?

No!
But dimensionality reduction must not preserve pairwise distances!

Recall: k-means cost function

_ H 2
cost(P, C) = ,;ggg o — cll

Dimensionality reduction
P c RY is replaced by Q c R of smaller intrinsic dimension such that

|cost(Q, C) — cost(P, C)| < e-cost(P, C)

holds for all sets C c RY of k centers.

v
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@ [Drineas, Frieze, Kannan, Vempala, Vinay, 1999]
2-approximation algorithm that projects to k dimensions by SVD
@ [McSherry, 2001], [Awashti, Sheffet, 2014]
4-guarantee with k dimensions based on SVD
@ [Boutsidis, Mahoney, Drineas, 2009]
(2 + )-guarantee with ©(k/<?) dimensions (SVD+sampling)
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Utilizing the Singular Value Decomposition (SVD)
@ singular vectors v, ..., vy, form a basis
@ ordered according to singular values o4 > ... > o, > 0
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Utilizing the Singular Value Decomposition (SVD)
@ singular vectors v, ..., vy, form a basis
@ ordered according to singular values o4 > ... > o, > 0

of =) (x'vi)? \

xeP
7
2 2
> o=l
i=1 xepP

SVD-based projections
~+ Project to the span of the first m singular vectors, V.

v
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The Subspace Approximation Problem Definition and Goal

Deal with an easier problem first
~+ Subspace Approximation J
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~+ Subspace Approximation )

The Subspace Approximation Problem
Given P c RY, find a k-dimensional subspace V that minimizes

D lx =m0l

xeP
where 7y/(x) is the perpendicular projection of x to V.
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The Subspace Approximation Problem
Given P c RY, find a k-dimensional subspace V that minimizes

D lx =m0l
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where 7y/(x) is the perpendicular projection of x to V.
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This talk is not about optimizing cost functions!

If we wanted to solve the subspace approximation problem. ..
The span of the first k singular vectors V is the optimal solution!

v

Dimensionality reduction for subspace approximation
P c RY is replaced by Q c R of smaller intrinsic dimension such that

Sy -m B =S k- I < e IIx - m(x)IP

yeQ XeP XeP

holds for all k-dimensional subspaces V.
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The Subspace Approximation Problem Definition and Goal

This talk is not about optimizing cost functions!

If we wanted to solve the subspace approximation problem. ..
The span of the first k singular vectors V is the optimal solution!

v

Dimensionality reduction for subspace approximation
P c RY is replaced by Q c R of smaller intrinsic dimension such that

Sy = IB+ A =3 k= (1] < e 3 IIx = m ()|

yeQ XeP XeP

holds for all k-dimensional subspaces V.

~» want to provide an oracle that can answer subpace queries

J
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The Subspace Approximation Problem Dimensionality Reduction

What is the squared distance between a subspace and a point?
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The Subspace Approximation Problem Dimensionality Reduction

What is the squared distance between a subspace and a point?

[Ix = v OOl = [1X]12 = [lmv(x)]2

©

gets closer to ||x||? if k is small compared to d
subspace ‘chooses’ k directions where the length is disregarded

(%]

©

First idea: Just say >, p || x|[?!
Problem: P lies within k dimensions — true answer can be 0

(*]

Second idea: Store most important dimensions and lost length!
~ Project points to Vj, for some nice m, set A :=>"j_ ., 0%

v
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The Subspace Approximation Problem Dimensionality Reduction

The Singular Value Decomposition (SVD)

Vi

4

of =) (x'vi)?

xeP
7
2 2
> o=l
i=1 XeP
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o
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The Singular Value Decomposition (SVD)

4

4

of = (x'v)?

xeP
7
2 2
> o=l
i=1 XeP

V.

o distance to subspace gets closer to ||x||2 if k is small compared to d
@ subspace ‘chooses’ k directions where the length is disregarded

Assumption for this talk
Query subspace is spanned by singular vectors

v
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The Subspace Approximation Problem Dimensionality Reduction

Dimensionality reduction
Project P to Vi, store >-7_,,, 4 02!

Task: Report distance to a given query subspace
@ Query subspace ‘disregards’ length in k directions
@ we want to report 3" ||x||?> — disregarded length
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Dimensionality reduction
Project P to Vi, store >-7_,,, 4 02!

Task: Report distance to a given query subspace
@ Query subspace ‘disregards’ length in k directions
@ we want to report 3" ||x||?> — disregarded length

2 2 2 2 2 2 2 2 2 2
04 0o O'30'k Uk+102k0m Um+1"'0m+k"'ar—1 (9

@ we report Z,q:m .1 0% plus correct contribution of first m

@ Error: Dimensions we report but are disregarded
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The Subspace Approximation Problem Dimensionality Reduction

Dimensionality reduction
Project P to Vi, store >-7_,,, 4 02!

Task: Report distance to a given query subspace
@ Query subspace ‘disregards’ length in k directions
@ we want to report 3" ||x||?> — disregarded length

2 2 2 2 2 2 2 2 2 2 2

o we report 37, o2 plus correct contribution of first m

m+k 2

@ Error: Dimensions we report but are disregarded < ) /7", o7
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The Subspace Approximation Problem Dimensionality Reduction

Dimensionality reduction
Project P to Vi, store >-7_,,, 4 02!

Task: Report distance to a given query subspace
@ Query subspace ‘disregards’ length in k directions
@ we want to report 3" ||x||?> — disregarded length

2 2 2 2 2 2 2 2 2 2
04 0o 0—3"'0-/( Uk+1...0'2k...0'm O'm+1...0'm+k...0'r_1
@ we report Z?:mﬂ o2 plus correct contribution of first m

@ Error: Dimensions we report but are disregarded < Z,@,,L o?

2

Core idea
Make m large enough such that o2, + ...+ 02 .,
is small compared to 02, +05... + ... + 0?! —m> [k/e]
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The Subspace Approximation Problem Dimensionality Reduction

Theorem

Forany P c RY k, e € (0,1), n,d > k + [k/<], there exists
a Q with intrinsic dimension [k /=] and a constant A such that

Sy =B+ A =S Ik = (I < e IIx = mv(x)IP

XeEQ xepP xeP

holds for all k-dimensional subspaces V.
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The Subspace Approximation Problem Dimensionality Reduction

Theorem

Forany P c RY k, e € (0,1), n,d > k + [k/<], there exists
a Q with intrinsic dimension [k /=] and a constant A such that

Sy =B+ A =S Ik = (I < e IIx = mv(x)IP

XeEQ xepP xeP

holds for all k-dimensional subspaces V.

@ Q is the projection of Pto V,,, with m= [k/c] An
@ A is the lost squared length 7. ; 0%

@ maximum erroris 7K o < e, ol
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Back to k-means Dimensionality Reduction

How does this help for k-means? |
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o Define (Xg); = {1/ VIGil I;I:ee G ~ (N x K)-matrix

o XoXZA = u(C(x)

0 ~ Yy lIx; — m(COMI = [|A— XcXEAI2
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Back to k-means Dimensionality Reduction

Better Plan
Let P C RY, let C be k centers
@ Store the points as rows of a matrix A € R

o Define (Xg); = {1/ VIGil I(;;(’ee G ~ (N x K)-matrix

o XoXZA = u(C(x)

0 ~ 31 11% = n(CONIP = ||A— XcXEAlZ
o XcX[ is a projection matrix and has rank k!
@ Theorem already works for X¢, result for k-means immediate

Cohen, Elder, Musco, Musco, Persu, 2015:
This is unnecessary, we are already done!
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Back to k-means Dimensionality Reduction

Boutsidis, Mahoney, Drineas, 2009

The k-means problem is equivalent to a
constraint subspace approximation problem
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Back to k-means Dimensionality Reduction

Boutsidis, Mahoney, Drineas, 2009

The k-means problem is equivalent to a
constraint subspace approximation problem in R”!

Fits the columns of A to a k-dimensional subspace.

@ Apply dimensionality reduction for subspace approximation
@ Resultis a (n x d)-matrix of rank m

Dimensionality reduction for k-means to [k/e| dimensions!

— Sy S S
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Lower Bound for SVD-based Dimensionality Reductions

Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015
For any ¢ > 0 there exist n, d, k and a point set P C R? such that
@ projecting to Vi, with m := [k /=] — 1

@ and computing optimal centers on Vp,

@ does not give a (1 + ¢)-approximation
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Back to k-means Lower Bound for SVD-based Dimensionality Reductions

Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015
For any ¢ > 0 there exist n, d, k and a point set P C R? such that
@ projecting to Vi, with m = [k/=] — 1

@ and computing optimal centers on Vp,

@ does not give a (1 + ¢)-approximation

Construction

@ points with [k/e] + k — 1 dimensions

@ place simplex in k — 1 dimensions

@ place a Gaussian cloud in remaining [k/c| dimensions

Optimal solution: One center for Gaussian cloud, kK — 1 for simplex
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Back to k-means Lower Bound for SVD-based Dimensionality Reductions

Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015
For any ¢ > 0 there exist n, d, k and a point set P C R? such that
@ projecting to Vi, with m = [k/=] — 1

@ and computing optimal centers on Vp,

@ does not give a (1 + ¢)-approximation

Construction

@ points with [k/e] + k — 1 dimensions

@ place simplex in k — 1 dimensions

@ place a Gaussian cloud in remaining [k/c| dimensions

Optimal solution: One center for Gaussian cloud, kK — 1 for simplex

Parameters are adjusted such that whp

@ largest [k/e]| singular vectors lie in the cloud

@ ~- simplex collapses to origin ~ too high clustering cost )
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Back to k-means Lower Bound for SVD-based Dimensionality Reductions

Lower Bound, Cohen, Elder, Musco, Musco, Persu, 2015
For any ¢ > 0 there exist n, d, k and a point set P C R? such that
@ projecting to Vi, with m = [k/=] — 1

@ and computing optimal centers on Vp,

@ does not give a (1 + ¢)-approximation

Construction

@ points with [k/e] + k — 1 dimensions

@ place simplex in k — 1 dimensions

@ place a Gaussian cloud in remaining [k/c| dimensions

Optimal solution: One center for Gaussian cloud, kK — 1 for simplex

Thank you for your attention!
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