Small coresets and a dimensionality reduction for the k-means problem

Dan Feldman, Christian Sohler, Melanie Schmidt

02/18/2015
The \emph{k}-means problem

Given a point set $P \subseteq \mathbb{R}^n$, compute a set $C \subseteq \mathbb{R}^n$ with $|C| = k$ centers which minimizes cost $\left(P, C \right)$ = $\sum_{p \in P} \min_{c \in C} ||p - c||^2$, the sum of the squared distances.

Coresets, Dimensionality reduction for the \emph{k}-means problem
The k-means problem

Given a point set $P \subseteq \mathbb{R}^n$, compute a set $C \subseteq \mathbb{R}^n$ with $|C| = k$ centers which minimizes cost $(P, C) = \sum_{p \in P} \min_{c \in C} ||p - c||^2$, the sum of the squared distances.

Induces a partitioning of the input point set.

Coresets, Dimensionality reduction for the k-means problem
The k-means problem

- Given a point set $P \subseteq \mathbb{R}^n$,
- compute a set $C \subseteq \mathbb{R}^n$ with $|C| = k$ centers

The sum of the squared distances induces a partitioning of the input point set.
The \(k \)-means problem

- Given a point set \(P \subseteq \mathbb{R}^n \),
- compute a set \(C \subseteq \mathbb{R}^n \)
 with \(|C| = k\) centers
- which minimizes cost\((P, C)\)
 \[
 = \sum_{p \in P} \min_{c \in C} \|p - c\|_2^2,
 \]
the sum of the squared distances.

| 02/18/2015 | 1 / 17 | Coresets, Dimensionality reduction for the \(k \)-means problem | Introduction | The \(k \)-means problem |
The \(k \)-means problem

- Given a point set \(P \subseteq \mathbb{R}^n \),
- compute a set \(C \subseteq \mathbb{R}^n \) with \(|C| = k \) centers
- which minimizes cost(\(P, C \))
 \[
 = \sum_{p \in P} \min_{c \in C} ||p - c||^2,
 \]
the sum of the squared distances.

- induces a partitioning of the input point set
Big Data

Coresets, Dimensionality reduction for the k-means problem
Big Data
many data points
many data points
high dimensional
data stream
Coresets
Dimensionality reduction
Streaming
k-means clustering
k-means clustering
projective clustering
kernel k-means
k-median clustering

coresets, dimensionality reduction for the k-means problem
Coresets, Dimensionality reduction for the \(k \)-means problem
Big Data
many data points
high dimensional
data stream
Coresets, Dimensionality reduction
for the k-means problem
02/18/2015
2 / 17
Coresets, Dimensionality reduction for the k-means problem
Coresets, Dimensionality reduction for the k-means problem
Introduction

Mindmap

- Dimensionality reduction
- Streaming

Coresets

Big Data
- many data points
- high dimensional
- data stream

Coresets, Dimensionality reduction for the k-means problem

02/18/2015
Coresets

Dimensionality reduction

Streaming

k-means clustering

High-dimensional data stream

Many data points

Big Data

Coresets, Dimensionality reduction for the k-means problem
Coresets, Dimensionality reduction, Streaming, projective clustering, k-means clustering, kernel k-means clustering for the k-means problem.
Introduction

Mindmap

Big Data
- many data points
- high dimensional
- data stream

Coresets
- high dimensional data stream
- Coresets, Dimensionality reduction
 - Streaming
 - k-means clustering
 - k-median clustering
 - Projective clustering
 - Kernel k-means

for the k-means problem
Coreset (idea)

- compute a smaller weighted point set
- that preserves the k-means objective,
- i.e., the sum of the weighted squared distances is similar
- for all sets of k centers
Coreset (idea)
- compute a smaller weighted point set
- that preserves the \(k \)-means objective,
- i.e., the sum of the weighted squared distances is similar
- for all sets of \(k \) centers

Why for all centers?
- coreset and input should look alike for \(k \)-means
Coreset (idea)
- compute a smaller **weighted point set**
- that preserves the *k*-means objective,
- i.e., the **sum of the weighted squared distances** is similar
- for all sets of *k* centers

Why for all centers?
- coreset and input should look alike for *k*-means
- assume optimizing over the possible centers
- if the cost is underestimated for certain center sets, then they might be mistakenly assumed to be optimal
Coreset (idea)
- compute a smaller weighted point set
- that preserves the k-means objective,
- i.e., the sum of the weighted squared distances is similar
- for all sets of k centers

Why for all centers?
- coreset and input should look alike for k-means
- assume optimizing over the possible centers
- if the cost is underestimated for certain center sets, then they might be mistakenly assumed to be optimal

Very convenient, e.g. for usage in data streams or distributed settings
Strong Coresets [Har-Peled, Mazumdar, 2004]

For a $P \subset \mathbb{R}^d$, a weighted set $S \subset \mathbb{R}^d$ is a $(1 + \varepsilon)$-coreset if

$$|\text{cost}_w(S, C) - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of k centers.
Strong Coresets [Har-Peled, Mazumdar, 2004]
For a $P \subset \mathbb{R}^d$, a weighted set $S \subset \mathbb{R}^d$ is a $(1 + \varepsilon)$-coreset if

$$|\text{cost}_w(S, C) - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of k centers.
Strong Coresets [Har-Peled, Mazumdar, 2004]

For a \(P \subset \mathbb{R}^d \), a weighted set \(S \subset \mathbb{R}^d \) is a \((1 + \varepsilon)\)-coreset if

\[
|\text{cost}_w(S, C) - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)
\]

holds for all sets \(C \subset \mathbb{R}^d \) of \(k \) centers.
Strong Coresets [Har-Peled, Mazumdar, 2004]

For a $P \subset \mathbb{R}^d$, a weighted set $S \subset \mathbb{R}^d$ is a $(1 + \varepsilon)$-coreset if

$$|\text{cost}_w(S, C) - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of k centers.
Strong Coresets [Har-Peled, Mazumdar, 2004]

For a $P \subset \mathbb{R}^d$, a weighted set $S \subset \mathbb{R}^d$ is a $(1 + \varepsilon)$-coreset if

$$|\text{cost}_w(S, C) − \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of k centers.
Strong Coresets [Har-Peled, Mazumdar, 2004]

For a $P \subset \mathbb{R}^d$, a weighted set $S \subset \mathbb{R}^d$ is a $(1 + \varepsilon)$-coreset if

$$|\text{cost}_w(S, C) - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of k centers.
Strong Coresets [Har-Peled, Mazumdar, 2004]

For a $P \subset \mathbb{R}^d$, a weighted set $S \subset \mathbb{R}^d$ is a $(1 + \varepsilon)$-coreset if

$$|\text{cost}_w(S, C) - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of k centers.

Space reduction: Size of S should be polylogarithmic in n or constant.
Strong Coresets [Har-Peled, Mazumdar, 2004]

For a $P \subset \mathbb{R}^d$, a weighted set $S \subset \mathbb{R}^d$ is a $(1 + \varepsilon)$-coreset if

$$|\text{cost}_w(S, C) - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of k centers.

Space reduction: Size of S should be polylogarithmic in n or constant.

Earlier coreset definitions e.g. in [AHPV04], [BHPI02], [I99], [MOP01]
Input Size Reductions

Dimensionality reduction

Replace P by a point set P' of smaller intrinsic dimension
Dimensionality reduction

Replace P by a point set P' of smaller intrinsic dimension
Dimensionality reduction

Replace P by a point set P' of smaller intrinsic dimension
Dimensionality reduction

Replace P by a point set P' of smaller intrinsic dimension
Dimensionality reduction

Replace P by a point set P' of smaller intrinsic dimension.
Dimensionality reduction

Replace P by a point set P' of smaller intrinsic dimension

[Drineas et. al., 1999]
- projection to first k principal components
- 2-approximation

$\pi : \mathbb{R}^d \rightarrow \mathbb{R}^m$
Replace P by a point set P' of smaller intrinsic dimension

[Drineas et. al., 1999]
- projection to first k principal components
- 2-approximation

[Johnson, Lindenstrauss, 1984]
- random projection, target dimension $\Theta(\log n/\varepsilon^2)$
- $(1 + \varepsilon)$-coreset-type guarantee
Input Size Reductions

Dimensionality reduction

Replace P by a point set P' of smaller intrinsic dimension

[Drineas et. al., 1999]
- Projection to first k principal components
- 2-approximation

[Johnson, Lindenstrauss, 1984]
- Random projection, target dimension $\Theta(\log n/\epsilon^2)$
- $(1 + \epsilon)$-coreset-type guarantee

[BMD09] $2 + \epsilon, \tilde{\Theta}(k/\epsilon^2)$

[BZD10] $2 + \epsilon, \Theta(k/\epsilon^2)$
Dimensionality reduction

\(P \subset \mathbb{R}^d \) is replaced by \(P' \subset \mathbb{R}^d \) of smaller intrinsic dimension such that

\[
\left| \text{cost}(P', C) - \text{cost}(P, C) \right| \leq \varepsilon \text{cost}(P, C)
\]

holds for all sets \(C \subset \mathbb{R}^d \) of \(k \) centers.
Dimensionality reduction

\(P \subset \mathbb{R}^d \) is replaced by \(P' \subset \mathbb{R}^d \) of smaller intrinsic dimension such that

\[
|\text{cost}(P', C) - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)
\]

holds for all sets \(C \subset \mathbb{R}^d \) of \(k \) centers.

Strong Coresets [Har-Peled, Mazumdar, 2004]

For a \(P \subset \mathbb{R}^d \), a weighted set \(S \subset \mathbb{R}^d \) with \(|S| < |P| \) is a \((1 + \varepsilon)\)-coreset if

\[
|\text{cost}_w(S, C) - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)
\]

holds for all sets \(C \subset \mathbb{R}^d \) of \(k \) centers.
Moving points to reduce their complexity [HPM04,FS05]

Move points in P by using a mapping $\pi : P \rightarrow \mathbb{R}^d$ that satisfies

$$\sum_{x \in P} ||x - \pi(x)||^2 \leq \frac{\varepsilon^2}{16} \cdot OPT.$$

Then it holds for every set of k centers $C \subset \mathbb{R}^d$ that

$$|\text{cost}(\pi(P), C) - \text{cost}(P, C)| \leq \varepsilon \cdot \text{cost}(P).$$
Moving points to reduce their complexity [HPM04,FS05]

Move points in P by using a mapping $\pi : P \rightarrow \mathbb{R}^d$ that satisfies

$$\sum_{x \in P} \|x - \pi(x)\|^2 \leq \frac{\varepsilon^2}{16} \cdot \text{OPT}.$$

Then it holds for every set of k centers $C \subset \mathbb{R}^d$ that

$$|\text{cost}(\pi(P), C) - \text{cost}(P, C)| \leq \varepsilon \cdot \text{cost}(P).$$
Moving points to reduce their complexity [HPM04,FS05]

Move points in P by using a mapping $\pi : P \rightarrow \mathbb{R}^d$ that satisfies

$$\sum_{x \in P} ||x - \pi(x)||^2 \leq \frac{\varepsilon^2}{16} \cdot OPT.$$

Then it holds for every set of k centers $C \subset \mathbb{R}^d$ that

$$|\text{cost}(\pi(P), C) - \text{cost}(P, C)| \leq \varepsilon \cdot \text{cost}(P).$$
Moving points to reduce their complexity [HPM04,FS05]

Move points in P by using a mapping $\pi : P \to \mathbb{R}^d$ that satisfies

$$\sum_{x \in P} ||x - \pi(x)||^2 \leq \frac{\varepsilon^2}{16} \cdot \text{OPT}.$$

Then it holds for every set of k centers $C \subset \mathbb{R}^d$ that

$$|\text{cost}(\pi(P), C) - \text{cost}(P, C)| \leq \varepsilon \cdot \text{cost}(P).$$

Used in combination with grids [HPM04], [HPK05], [FS05], [FGSSS13]
Moving points to reduce their complexity [HPM04,FS05]

Move points in P by using a mapping $\pi : P \rightarrow \mathbb{R}^d$ that satisfies

$$\sum_{x \in P} ||x - \pi(x)||^2 \leq \frac{\epsilon^2}{16} \cdot \text{OPT}.$$

Then it holds for every set of k centers $C \subset \mathbb{R}^d$ that

$$|\text{cost}(\pi(P), C) - \text{cost}(P, C)| \leq \epsilon \cdot \text{cost}(P).$$

Used in combination with grids [HPM04], [HPK05], [FS05], [FGSSS13] (Coreset sizes depend exponentially on the dimension d)
Random Sampling

- draw a point \(x \in P \) uniformly at random
- \(\rightarrow \) unbiased estimator for \(\text{cost}(P, C) \)
- for any fixed set of \(k \) centers \(C \subset \mathbb{R}^d \)
Random Sampling
- draw a point $x \in P$ uniformly at random
- \rightarrow unbiased estimator for cost(P, C)
- for any fixed set of k centers $C \subset \mathbb{R}^d$

Problem
- high variance
- large sample set

Techniques

Random Sampling

- For the k-means problem, a coreset size of $\tilde{O}(kd/\varepsilon^4)$
- Hoeffding, 1963, Haussler, 1992, MOP, 2001, Chen, 2006
- $O(k \cdot \log n \cdot n \cdot \text{diam}(P) / (\varepsilon^2 \cdot \text{OPT}))$ is a sufficient sample size

Coresets, Dimensionality reduction

for the k-means problem

02/18/2015 8 / 17
Random Sampling

- draw a point \(x \in P \) uniformly at random
- \(\rightarrow \) unbiased estimator for \(\text{cost}(P, C) \)
- for any fixed set of \(k \) centers \(C \subset \mathbb{R}^d \)

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>- high variance</td>
</tr>
<tr>
<td>- large sample set</td>
</tr>
</tbody>
</table>

[Hoeffding, 1963], [Haussler, 1992], [MOP, 2001], [Chen, 2006]

\(O(k \cdot \log n \cdot n \cdot \text{diam}(P)/(\varepsilon^2 \cdot \text{OPT})) \) is a sufficient sample size
Random Sampling
- draw a point \(x \in P \) uniformly at random
- \(\rightarrow \) unbiased estimator for \(\text{cost}(P, C) \)
- for any fixed set of \(k \) centers \(C \subset \mathbb{R}^d \)

Problem
- high variance
- large sample set

[Hoeffding, 1963], [Haussler, 1992], [MOP, 2001], [Chen, 2006]

\(\mathcal{O}(k \cdot \log n \cdot n \cdot \text{diam}(P) / (\varepsilon^2 \cdot \text{OPT})) \) is a sufficient sample size

Reduce variance by...
- partitioning \(P \) into sets with small diameter [C06]
- sampling according to cost based probabilities [FMS07]
- sampling according to sensitivity based probabilities [LS10, FL11]
Random Sampling

- draw a point $x \in P$ uniformly at random
- \rightarrow unbiased estimator for cost(P, C)
- for any fixed set of k centers $C \subset R^d$

Problem

- high variance
- large sample set

[Hoeffding, 1963], [Haussler, 1992], [MOP, 2001], [Chen, 2006]

$O(k \cdot \log n \cdot n \cdot \text{diam}(P)/(\varepsilon^2 \cdot \text{OPT}))$ is a sufficient sample size

Reduce variance by...

- partitioning P into sets with small diameter [C06]
- sampling according to cost based probabilities [FMS07]
- sampling according to sensitivity based probabilities [LS10, FL11]

Feldman, Langberg (2011) get a coreset size of $\tilde{O}(kd/\varepsilon^{-4})$.
[Zhang, Ramakrishnan, Livny, 1996]

It holds for any $P \subseteq \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$
\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,
$$

where $\mu(P) = \sum_{x \in P} x / |P|$ is the centroid of P.
[Zhang, Ramakrishnan, Livny, 1996]

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} \|x - z\|^2 = \sum_{x \in P} \|x - \mu(P)\|^2 + |P| \cdot \|\mu(P) - z\|^2,$$

where $\mu(P) = \sum_{x \in P} x / |P|$ is the centroid of P.

![Diagram showing the decomposition of the sum of squared distances.](image)
[Zhang, Ramakrishnan, Livny, 1996]

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x / |P|$ is the centroid of P.

Implications

- centroid is always the optimal 1-means solution
- optimal solution consists of centroids of subsets
- centroid (plus constant) is an $(1, \varepsilon)$-coreset with no error
[Zhang, Ramakrishnan, Livny, 1996]

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,$$

where $\mu(P) = \sum_{x \in P} x / |P|$ is the centroid of P.

Coresets, Dimensionality reduction

for the k-means problem

02/18/2015 9 / 17
[Zhang, Ramakrishnan, Livny, 1996]

It holds for any $P \subset \mathbb{R}^d$ and any $z \in \mathbb{R}^d$ that

$$
\sum_{x \in P} ||x - z||^2 = \sum_{x \in P} ||x - \mu(P)||^2 + |P| \cdot ||\mu(P) - z||^2,
$$

where $\mu(P) = \sum_{x \in P} x/|P|$ is the centroid of P.

Neat exact coreset for $k = 1$: centroid plus constant
Application for coresets

- **Idea:** Store **fixed costs** in an additional constant
- Subset of points with **same center** pay a **fixed** basic cost
Application for coresets

- **Idea:** Store **fixed costs** in an additional constant
- Subset of points with **same center** pay a **fixed** basic cost

![Diagram showing application for coresets](image-url)
Application for coresets

- Idea: Store fixed costs in an additional constant
- Subset of points with same center pay a fixed basic cost
Application for coresets

- **Idea:** Store **fixed costs** in an additional constant
- Subset of points with **same center** pay a **fixed** basic cost

![Diagram of coresets](image)
Application for coresets

- **Idea**: Store *fixed costs* in an additional constant
- Subset of points with *same center* pay a *fixed* basic cost
Application for coresets

- **Idea:** Store **fixed costs** in an additional constant
- Subset of points with **same center** pay a **fixed** basic cost

1. start with an (approximately) **optimal clustering**
2. for each subset in the partitioning, test:
3. \[\text{optimal } k\text{-means cost} \leq \text{optimal } 1\text{-means cost} / (1 + \varepsilon) \] ?
4. If yes, subdivide and recurse on the subsets
5. If not, replace by centroid plus constant

Notice: Stop recursion at level \(\mathcal{O}(\log_{1+\varepsilon} \varepsilon^{-2}) \) and replace by centroid
Application for coresets

- **Idea:** Store **fixed costs** in an additional constant
- Subset of points with **same center** pay a **fixed** basic cost

1. **start with an (approximately) optimal clustering**
2. for each subset in the partitioning, test:
3. optimal k-means cost \leq optimal 1-means cost / $(1 + \varepsilon)$?
4. If yes, subdivide and recurse on the subsets
5. If not, replace by centroid plus constant

Notice: Stop recursion at level $O(\log_{1+\varepsilon} \varepsilon^{-2})$ and replace by centroid

- Corset has size $O \left(k^{O(\log_{1+\varepsilon} \varepsilon^{-2})} \right) = O(k^{O(\varepsilon^{-2} \log \varepsilon^{-1})})$
- number of points is independent of n and d
Application for coresets

- Idea: Store fixed costs in an additional constant
- Subset of points with same center pay a fixed basic cost

For all subsets in our partitioning:
- either a we stop dividing at some point
 → points can pick the same center with not much error
- or 1-means cost falls below threshold
 → use movement lemma to move points to the centroid

Corset has size $O\left(k^{O(\log_{1+\varepsilon} \varepsilon^{-2})}\right) = O(k^{O(\varepsilon^{-2} \log \varepsilon^{-1})})$
- number of points is independent of n and d
Now

- much smaller coreset size
- obtained by reducing the intrinsic dimension first
Now

- much smaller coreset size
- obtained by reducing the intrinsic dimension first

Recall: Feldman, Langberg obtain coreset with $\tilde{O}(kd/\varepsilon^4)$ points
- reduce dimension, compute coreset
- d vanishes from coreset size
Now

- much smaller coreset size
- obtained by reducing the intrinsic dimension first

Recall: Feldman, Langberg obtain coreset with $\tilde{O}(kd/\varepsilon^4)$ points
- reduce dimension, compute coreset
- d vanishes from coreset size

Theorem

For any $P \in \mathbb{R}^d$, k, $\varepsilon \in (0, 1)$, $n, d \geq k + \lceil 18k/\varepsilon^2 \rceil$, there exists a P' with intrinsic dimension $\lceil 18k/\varepsilon^2 \rceil$ and a constant Δ such that

$$| \text{cost}(P', C) + \Delta - \text{cost}(P, C) | \leq \varepsilon \text{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of k centers.
Now

- much smaller coreset size
- obtained by reducing the intrinsic dimension first

Recall: Feldman, Langberg obtain coreset with $\tilde{O}(kd/\varepsilon^4)$ points

- reduce dimension, compute coreset
- d vanishes from coreset size $\rightarrow \tilde{O}(k^2/\varepsilon^6)$ points

Theorem

For any $P \in \mathbb{R}^d$, k, $\varepsilon \in (0, 1)$, $n, d \geq k + \lceil 18k/\varepsilon^2 \rceil$, there exists a P' with intrinsic dimension $\lceil 18k/\varepsilon^2 \rceil$ and a constant Δ such that

$$|\text{cost}(P', C) + \Delta - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of k centers.
[Drineas, Frieze, Kannan, Vempala, Vinay, 1999]

Let P be a set of n points in \mathbb{R}^n. Consider the best fit subspace

$$V_k := \arg \min_{\text{dim}(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.
Let P be a set of n points in \mathbb{R}^n. Consider the best fit subspace

$$V_k := \arg \min_{\text{dim}(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.
Let P be a set of n points in \mathbb{R}^n. Consider the best fit subspace

$$V_k := \arg \min_{\dim(V) = k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.
[Drineas, Frieze, Kannan, Vempala, Vinay, 1999]

Let P be a set of n points in \mathbb{R}^n. Consider the best fit subspace

$$V_k := \arg \min_{\text{dim}(V) = k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.
[Drineas, Frieze, Kannan, Vempala, Vinay, 1999]

Let P be a set of n points in \mathbb{R}^n. Consider the best fit subspace

$$V_k := \arg \min_{\dim(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.
Let P be a set of n points in \mathbb{R}^n. Consider the best fit subspace

$$V_k := \arg \min_{\text{dim}(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.
Let P be a set of n points in \mathbb{R}^n. Consider the best fit subspace

$$V_k := \arg \min_{\dim(V) = k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.
Let P be a set of n points in \mathbb{R}^n. Consider the best fit subspace

$$V_k := \arg \min_{\dim(V) = k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.
Let P be a set of n points in \mathbb{R}^n. Consider the best fit subspace

$$V_k := \arg\min_{\text{dim}(V)=k} \sum_{p \in P} d(p, V)^2 \subset \mathbb{R}^n.$$

Solving the projected instance in V_k yields a 2-approximation.
Plan

- $O(k/\varepsilon^2)$ instead of k dimensions $\rightarrow (1 + \varepsilon)$-approximation
- coreset-type guarantee
Plan

- $O(k/\varepsilon^2)$ instead of k dimensions $\rightarrow (1+\varepsilon)$-approximation
- coreset-type guarantee

Step 1: Split cost into two terms

For any k-dimensional subspace, approximate squared distances to and within the subspace!
Plan

- $O(k/\varepsilon^2)$ instead of k dimensions $\rightarrow (1 + \varepsilon)$-approximation
- coreset-type guarantee

Step 1: Split cost into two terms

For any k-dimensional subspace, approximate squared distances to and within the subspace!
Step 2: Squared distances to any subspace are correct (approx.)

What is the squared distance between a point and a subspace?

dist^2(x, V) = \|x\|^2 - \|\phi_V(x)\|^2
Step 2: Squared distances to any subspace are correct (approx.)

What is the squared distance between a point and a subspace?

\[\text{dist}^2(x, V) = \|x\|^2 - \|\phi_V(x)\|^2 \]

- gets closer to \(\|x\|^2 \) if \(k \) is small compared to \(d \)
- subspace ‘chooses’ \(k \) directions where the length is disregarded
Step 2: Squared distances to any subspace are correct (approx.)

What is the squared distance between a point and a subspace?

\[
\text{dist}^2(x, V) = \|x\|^2 - \|\phi_V(x)\|^2
\]

- gets closer to \(\|x\|^2\) if \(k\) is small compared to \(d\)
- subspace ‘chooses’ \(k\) directions where the length is disregarded

First idea: Just say \(\sum_{x \in P} \|x\|^2\)!
Problem: \(P\) lies within \(k\) dimensions \(\rightarrow\) true answer is 0
query subspace ‘disregards’ length in k directions
we want to report $\sum ||x||^2$ – disregarded length
query subspace ‘disregards’ length in k directions
we want to report $\sum ||x||^2$ – disregarded length

Best fit subspace, singular value decomposition (SVD)

Write points in row of a matrix A. Then the SVD gives

- singular values $\sigma_1 \geq \ldots \geq \sigma_d$ and vectors v_1, \ldots, v_d, form a basis
- v_1, \ldots, v_m span the best fit subspace of P,
- $A = \sum \sigma_i^2 u_i v_i^T$ and projection to V_m is $A_m = \sum_{i=m}^m \sigma_i^2 u_i v_i^T$
- $||A||_F^2 = \sum \sigma_i^2$
query subspace ‘disregards’ length in \(k \) directions
we want to report \(\sum ||x||^2 \) – disregarded length

Best fit subspace, singular value decomposition (SVD)

Write points in row of a matix \(A \). Then the SVD gives

- singular values \(\sigma_1 \geq \ldots \geq \sigma_d \) and vectors \(\nu_1, \ldots, \nu_d \), form a basis
- \(\nu_1, \ldots, \nu_m \) span the best fit subspace of \(P \),
- \(A = \sum \sigma_i^2 u_i \nu_i^T \) and projection to \(V_m \) is \(A_m = \sum_i^m \sigma_i^2 u_i \nu_i^T \)
- \(||A||^2_F = \sum \sigma_i^2 \)

Assume that subspace is aligned to singular vectors

\[
\begin{align*}
\sigma_1^2 & \quad \sigma_2^2 & \quad \sigma_3^2 & \quad \ldots & \quad \sigma_k^2 & \quad \sigma_{k+1}^2 & \quad \ldots & \quad \sigma_{2k}^2 & \quad \ldots & \quad \sigma_m^2 & \quad \sigma_{m+1}^2 & \quad \ldots & \quad \sigma_{m+k}^2 & \quad \ldots & \quad \sigma_d^2 \\
\end{align*}
\]

we report \(\sum_{i=m+1}^d \sigma_i^2 \) plus correct contribution of first \(m \)

Error: Dimensions we report but are disregarded
Identifying fixed costs

Smaller coresets via dimensionality reduction

- query subspace ‘disregards’ length in k directions
- we want to report $\sum ||x||^2$ – disregarded length

Best fit subspace, singular value decomposition (SVD)

Write points in row of a matrix A. Then the SVD gives

- singular values $\sigma_1 \geq \ldots \geq \sigma_d$ and vectors v_1, \ldots, v_d, form a basis
- v_1, \ldots, v_m span the best fit subspace of P,
- $A = \sum \sigma_i^2 u_i v_i^T$ and projection to V_m is $A_m = \sum_i^m \sigma_i^2 u_i v_i^T$
- $||A||_F^2 = \sum \sigma_i^2$

Assume that subspace is aligned to singular vectors

$$\sigma_1^2 \sigma_2^2 \sigma_3^2 \ldots \sigma_k^2 \sigma_{k+1}^2 \ldots \sigma_{2k}^2 \ldots \sigma_m^2 \sigma_{m+1}^2 \ldots \sigma_{m+k}^2 \ldots \sigma_d^2$$

- we report $\sum_{i=m+1}^d \sigma_i^2$ plus correct contribution of first m
- Error: Dimensions we report but are disregarded
• query subspace ‘disregards’ length in k directions
• we want to report $\sum ||x||^2$ – disregarded length

Best fit subspace, singular value decomposition (SVD)

Write points in row of a matrix A. Then the SVD gives
• singular values $\sigma_1 \geq \ldots \geq \sigma_d$ and vectors v_1, \ldots, v_d, form a basis
• v_1, \ldots, v_m span the best fit subspace of P,
• $A = \sum \sigma_i^2 u_i v_i^T$ and projection to V_m is $A_m = \sum_i^m \sigma_i^2 u_i v_i^T$
• $||A||_F^2 = \sum \sigma_i^2$

Assume that subspace is aligned to singular vectors

\[
\begin{align*}
\sigma_1^2 & \quad \sigma_2^2 & \quad \sigma_3^2 & \quad \ldots & \quad \sigma_k^2 & \quad \sigma_{k+1}^2 & \quad \ldots & \quad \sigma_{2k}^2 & \quad \ldots & \quad \sigma_m^2 & \quad \sigma_{m+1}^2 & \quad \ldots & \quad \sigma_{m+k}^2 & \quad \ldots & \quad \sigma_d^2
\end{align*}
\]

• we report $\sum_{i=m+1}^d \sigma_i^2$ plus correct contribution of first m
• Error: Dimensions we report but are disregarded
Assume that subspace is aligned to singular vectors

\[\sigma_1^2, \sigma_2^2, \sigma_3^2, \ldots, \sigma_k^2, \sigma_{k+1}^2, \ldots, \sigma_{2k}^2, \ldots, \sigma_m^2, \sigma_{m+1}^2, \ldots, \sigma_{m+k}^2, \ldots, \sigma_d^2 \]

- we report \(\sum_{i=m+1}^{d} \sigma_i^2 \) plus correct contribution of first \(m \)
- **Error:** Dimensions we report but are disregarded
Assume that subspace is aligned to singular vectors

\[\sigma_1^2 \quad \sigma_2^2 \quad \sigma_3^2 \ldots \sigma_k^2 \quad \sigma_{k+1}^2 \ldots \sigma_{2k}^2 \ldots \sigma_m^2 \quad \sigma_{m+1}^2 \ldots \sigma_{m+k}^2 \ldots \sigma_d^2 \]

- we report \(\sum_{i=m+1}^{d} \sigma_i^2 \) plus correct contribution of first \(m \)
- **Error:** Dimensions we report but are disregarded

Core idea

Make \(m \) large enough such that \(\sigma_{m+1}^2 + \ldots + \sigma_{m+k}^2 \) is small compared to \(\sigma_1^2 + \sigma_2^2 \ldots + \ldots + \sigma_m^2 \! \) \(\rightarrow m \geq \lceil k/\varepsilon \rceil \)
Assume that subspace is aligned to singular vectors

\[
\begin{align*}
\sigma_1^2 & \quad \sigma_2^2 \quad \sigma_3^2 \ldots \sigma_k^2 \\
\sigma_{k+1}^2 & \quad \sigma_{2k}^2 \quad \ldots \quad \sigma_m^2 \\
\sigma_{m+1}^2 & \quad \ldots \quad \sigma_{m+k}^2 \\
\ldots & \quad \ldots \\
\sigma_d^2 &
\end{align*}
\]

- we report \(\sum_{i=m+1}^{d} \sigma_i^2 \) plus correct contribution of first \(m \)
- **Error:** Dimensions we report but are disregarded

Core idea

Make \(m \) large enough such that \(\sigma_{m+1}^2 + \ldots + \sigma_{m+k}^2 \) is small compared to \(\sigma_1^2 + \sigma_2^2 \ldots + \ldots + \sigma_m^2 \) ! \(\rightarrow m \geq \lceil k/\varepsilon \rceil \)

Step 3: Squared distances within the subspace

Follows with similar measures, introduces the \(\varepsilon^{-2} \) and the constant 18
Theorem

For any $P \in \mathbb{R}^d$, k, $\varepsilon \in (0, 1)$, $n, d \geq k + \lceil 18k/\varepsilon^2 \rceil$, there exists a P' with intrinsic dimension $\lceil 18k/\varepsilon^2 \rceil$ and a constant Δ such that

$$|\text{cost}(P', C) + \Delta - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)$$

holds for all sets $C \subset \mathbb{R}^d$ of k centers.
Theorem

For any \(P \in \mathbb{R}^d, k, \varepsilon \in (0, 1), n, d \geq k + \lceil 18k/\varepsilon^2 \rceil \), there exists a \(P' \) with intrinsic dimension \(\lceil 18k/\varepsilon^2 \rceil \) and a constant \(\Delta \) such that

\[|\text{cost}(P', C) + \Delta - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C) \]

holds for all sets \(C \subset \mathbb{R}^d \) of \(k \) centers.

Theorem

For any \(P \in \mathbb{R}^d, k, \varepsilon \in (0, 1), n, d \geq k + \lceil ck/\varepsilon^2 \rceil \), there exists a weighted set \(S \) with \(\tilde{O}(k^2/\varepsilon^6) \) points and a constant \(\Delta \) such that

\[|\text{cost}(S, C) + \Delta - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C) \]

holds for all sets \(C \subset \mathbb{R}^d \) of \(k \) centers.
Theorem

For any \(P \in \mathbb{R}^d, k, \varepsilon \in (0, 1), n, d \geq k + \lceil 18k/\varepsilon^2 \rceil \), there exists a \(P' \) with intrinsic dimension \(\lceil 18k/\varepsilon^2 \rceil \) and a constant \(\Delta \) such that

\[
|\text{cost}(P', C) + \Delta - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)
\]

holds for all sets \(C \subset \mathbb{R}^d \) of \(k \) centers.

Theorem

For any \(P \in \mathbb{R}^d, k, \varepsilon \in (0, 1), n, d \geq k + \lceil ck/\varepsilon^2 \rceil \), there exists a weighted set \(S \) with \(\tilde{O}(k^2/\varepsilon^6) \) points and a constant \(\Delta \) such that

\[
|\text{cost}(S, C) + \Delta - \text{cost}(P, C)| \leq \varepsilon \text{cost}(P, C)
\]

holds for all sets \(C \subset \mathbb{R}^d \) of \(k \) centers.

Thank you for your attention!